منابع مشابه
Origin, trafficking, and intraepithelial fate of gut-tropic T cells
The small intestine epithelium (SI-Ep) harbors millions of unconventional (γδ and CD4(-) CD8(-) NK1.1(-) TCRαβ) and conventional (CD8αβ and CD4) T cells, designated intraepithelial lymphocytes (IELs). Here, we identified the circulating pool of SI-Ep-tropic T cells and studied their capacity to colonize the SI-Ep under steady-state conditions in SPF mice. Developmentally regulated levels of α4β...
متن کاملLaminins affect T cell trafficking and allograft fate.
Lymph nodes (LNs) are integral sites for the generation of immune tolerance, migration of CD4⁺ T cells, and induction of Tregs. Despite the importance of LNs in regulation of inflammatory responses, the LN-specific factors that regulate T cell migration and the precise LN structural domains in which differentiation occurs remain undefined. Using intravital and fluorescent microscopy, we found t...
متن کاملCell fate-specific regulation of EGF receptor trafficking during Caenorhabditis elegans vulval development.
By controlling the subcellular localization of growth factor receptors, cells can modulate the activity of intracellular signal transduction pathways. During Caenorhabditis elegans vulval development, a ternary complex consisting of the LIN-7, LIN-2 and LIN-10 PDZ domain proteins localizes the epidermal growth factor receptor (EGFR) to the basolateral compartment of the vulval precursor cells (...
متن کاملTrafficking of Siderophore Transporters in Saccharomyces cerevisiae and Intracellular Fate of Ferrioxamine B Conjugates
We have studied the intracellular trafficking of Sit1 [ferrioxamine B (FOB) transporter] and Enb1 (enterobactin transporter) in Saccharomyces cerevisiae using green fluorescent protein (GFP) fusion proteins. Enb1 was constitutively targeted to the plasma membrane. Sit1 was essentially targeted to the vacuolar degradation pathway when synthesized in the absence of substrate. Massive plasma membr...
متن کاملSanpodo controls sensory organ precursor fate by directing Notch trafficking and binding γ-secretase
In Drosophila peripheral neurogenesis, Notch controls cell fates in sensory organ precursor (SOP) cells. SOPs undergo asymmetric cell division by segregating Numb, which inhibits Notch signaling, into the pIIb daughter cell after cytokinesis. In contrast, in the pIIa daughter cell, Notch is activated and requires Sanpodo, but its mechanism of action has not been elucidated. As Sanpodo is presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cell Biology
سال: 2005
ISSN: 1540-8140,0021-9525
DOI: 10.1083/jcb1711rr2